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The performance of active control of vortex shedding from a circular cylinder is studied
experimentally with rotational feedback oscillations. The optimization of the control para-
meters, such as the phase lag, the feedback gain, and the position of reference sensor are carried
out using neural networks to minimize the reference velocity #uctuations in the cylinder wake.
Measurement of pressure distributions over the circular cylinder under the optimum control
indicate that the drag force is reduced by 16% and the lift force is suppressed by more than 70%
in comparison with the stationary cylinder. ( 2002 Academic Press
1. INTRODUCTION

THE VORTEX SHEDDING FROM A BLUFF-BODY structure in a stream has been a topic of interest
for many years. Among the research work in the literature, the control of vortex shedding is
very important from the practical point of view, because vortex shedding is closely related
to the occurrence of #ow induced vibrations and noise. Hence, various types of control are
introduced for the attenuation of the vortex shedding from blu!-body structures. These
results are summarized in review papers by Bearman (1984), Gri$n & Hall (1991), and so
on.

The feedback control of vortex shedding was "rst introduced by Ffowcs Williams & Zhao
(1989) and this control strategy was applied to various problems in thermal and #uid
engineering. Very recently, the e!ect of feedback control on the #uid force on the cylinder
was examined experimentally by Fujisawa et al. (2001). In this experiment, the feedback
signal was obtained from the velocity #uctuation in the cylinder wake and was fed back into
the rotational oscillation of the cylinder. The drag force was reduced by 11% by this
control, when the control parameters, such as phase lag and feedback gain, are selected
optimally. However, the optimum combinations of these parameters are expected to change
with variations of the reference sensor position. Hence, the automatic optimization of these
parameters is important for the control and further reduction of the #uid forces acting on
the circular cylinder.

The objective of the present paper is to investigate automatic optimization procedures for
determining the control parameters in the feedback controls. A neural network is applied
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for this purpose and the optimum aerodynamic performance of the circular cylinder under
feedback control is evaluated by measuring the pressure distributions around the circular
cylinder.

2. EXPERIMENTAL APPARATUS AND PROCEDURE

2.1. EXPERIMENTAL APPARATUS

The experiments are carried out in a low-speed wind tunnel with a square test-section of
0)5m]0)5m and 1)5m long providing a uniform #ow velocity. A circular cylinder of
a diameter D"100mm is positioned horizontally at the center of the open test-section and
supported by two vertical side walls, spanning the axis normal to the #ow direction. The
experiments are carried out at free-stream velocity ;"3m/s, which corresponds to
a Reynolds number Re ("D;/l)"2]104. Two hot-wires are positioned in the cylinder
wake; one is a reference sensor for feedback control and the other is a monitor sensor for
measuring the velocity #uctuations in a typical position of the cylinder wake in response to
the control. The position of the monitor sensor is "xed at (x/D"1)5, y/D"0)8) in the
present experiment. Here, x is a distance from the cylinder center along the free stream, y is
that in the vertical direction perpendicular to the free stream. These hot-wire sensors are
made from tungsten wire 5 lm in diameter and 1mm in length. The velocity #uctuation (u

r
)

at the reference sensor in the cylinder wake is processed through a linearizer, a high-pass
"lter at 1)6Hz and a low-pass "lter at 6)6Hz. The "ltered velocity (u

rf
) is transmitted to

a microcomputer "tted with AD and DA converter and supplied to the AC servo motor,
which provides a rotational oscillation to the circular cylinder up to a frequency of 8Hz.
The phase lag / between the angular velocity signal of the motor and the feedback velocity
signal and the feedback gain a ("Ru

.!9
/u

rf.!9
) are set in digital in the computer, where

u
.!9

is a maximum angular velocity of the cylinder and u
rf.!9

is a maximum of the "ltered
velocity. Further details of the experimental apparatus, including the validity of the
experiment and feedback control loop, are described by Fujisawa et al. (2001).

2.2. NEURAL NETWORK MODEL

The optimization of the control parameters such as the phase lag and the feedback gain are
carried out using a neural network, which automatically outputs the optimum parameters
after suitable learning. Figure 1 shows an illustration of a neural network model used in the
present study, which consists of three layers of neurons with back-propagation algorithms.
Figure 1. Neural network model.
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There are two units at the input layer, three units at the hidden layer, and one unit at the
output layer. The phase lag / and the feedback gain a are used as input parameters. When
these input parameters are abbreviated by I

i
(I

1
"a, I

2
"/), the output of the input layer

O
Ii

can be described as follows:

O
Ii
"1/(1#exp (!I

i
/¹

I
)). (1)

The relations between the input I
Hj

and output O
Hj

at the hidden layer of the neural
network model are described as follows:
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where w
ji

is a weight between the input and hidden layer. Similarly, the total input I
O

and
output O

O
at the output layer are given as follows:
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where w
j
is a weight between the hidden and output layer. The introduction of the neuron

temperatures ¹
I
, ¹

H
, ¹

O
in the sigmoidal functions is known to reduce the learning error

and hence the CPU time (Mastsuura 1997). The number of units at the hidden layer and the
neuron temperatures are determined from the point of learning error and CPU time, which
are conducted before starting the learning by the neural network model. The weights
w
ji

and w
j
are given by some random values in the initial phase of learning. When the actual

learning of the neural network starts, not only the weights w
ji
, w

j
but also the input

parameters are modi"ed by the steepest descent method to minimize the learning error
E"(J!O

O
)2/2, where J is an evaluation function (Li & Nagaya 1997). It is to be noted

that the modi"cation of the input parameters is carried out only when the learning of the
neural network has "nished after the iteration cycle of 5000, which was found to be large
enough for the training of neural network model. Then, the learning of the neural network
starts again with the new input parameters and the trained weights, which again outputs the
new input parameters. This procedure is continued until the velocity #uctuations become as
small as possible.

For the application of this neural network model to the present study, the evaluation
function is set to J":T

0
u@2
r

dt, where u@
r
is the velocity #uctuations at the reference sensor, t is

the time, and ¹ is the integration time. The selection of the integration time ¹ is important
to reach a convergence of the optimization. When the integration time ¹ is set to a value
less than 20 wavelengths, the output parameters vary largely with time, which may be due to
the unsteadiness of the velocity #uctuations in the cylinder wake. It is found that an increase
in the integration time stabilizes the output, but it needs more computing time, which
results in a poor response of the control system to the disturbances. Therefore, the
integration time is set to a rather short wavelength number of 7 and the evaluation function
is averaged over previous "ve sets of functions. This procedure improves both the conver-
gence and the response of the optimization.

3. RESULTS AND DISCUSSIONS

3.1. OPTIMIZATION OF CONTROL PARAMETERS

Figure 2(a}c) shows a typical example of the response of the cylinder wake to the neural
network control using rotational feedback oscillation. The variations of streamwise velocity
#uctuations at the monitor sensor are plotted against the time t after the start of control in
Figure 2(a), and the corresponding time variations of the phase lag / and feedback gain
a are given in Figure 2(b,c), respectively. Here, the reference sensor for control is set to



Figure 2. Time variations of monitored velocity #uctuations and control parameters under feed-
back control using neural network: (a) velocity #uctuations; (b) phase lag; (c) feedback gain.
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position (x/D"2, y/R"!1)2) in the shear layer. The control e!ect can be recognized in
the traces of velocity #uctuations in Figure 2(a) after t"180 s. of the start of neural network
control, where the reference velocity #uctuations under the control become smaller than
those of the stationary cylinder. Hereafter, the control e!ect is saturated and reaches
a steady state. Corresponding to the reduction in velocity #uctuations, the phase lag
/ decreases from the initial value and the corresponding feedback coe$cient a increases
gradually as shown in Figure 2(b,c), respectively. The time variations of the control
parameters are waving slowly, which may be due to the large velocity #uctuations in the
cylinder wake.

Figure 3(a}c) shows the distributions of streamwise velocity #uctuations at the monitor
sensor for various positions of reference probe in (a), the corresponding distributions of
phase lag in (b), and the feedback gain in (c). It is noted that the coordinates x, y in Figure 3
indicate the position of the reference sensor and the values in the "gure correspond to the
velocity #uctuations at the monitor sensor. The results are obtained by applying the present
optimizations to 35 points of the reference sensor in the cylinder wake ranging x/D"0}3



Figure 3. Distributions of monitored velocity #uctuations and control parameters at various
positions of reference sensor: (a) monitored velocity #uctuations; (b) phase lag; (c) feedback gain.
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and y/D"!1)5}0. It can be seen from Figure 3(a) that the monitored velocity #uctuations
become smallest when the reference sensor is located around the optimum position
(x/D"2, y/D"!1)2). The region of smaller velocity #uctuations extends from the
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cylinder side, downstream along the shear layer. However, the optimization study with
neural networks was not successful in the shaded area behind the cylinder, where the
variations of velocity #uctuations with respect to the control parameters are very small. It is
expected that the gradient type law used in the steepest descent method of neural networks
will not be applicable to such an area to obtain a suitable local minimum. According to
Figure 3(b,c), the optimum phase lag at the optimum reference-sensor-position is found to
be around /"1803, and the corresponding optimum feedback gain is about a"0)7. The
optimum phase lag decreases as the reference sensor moves downstream and the optimum
feedback gain increases as the reference sensor moves outside the cylinder, which indicates
the in#uence of the convection velocity of the shear layer separating from the cylinder and
the distribution of velocity #uctuations in the cylinder wake, respectively.

3.2. FLUID FORCE CHARACTERISTICS

Figure 4 shows the phase averaged drag and lift coe$cient C
dh ("2F

x
/ o;2D),

C
lh ("2F

y
/o;2D) of the circular cylinder under the feedback control and those of the

stationary cylinder, which are plotted against the phase angle t of vortex shedding. Here,
F
x

and F
y
are streamwise and normal #uid forces acting on the cylinder, respectively. The

uncertainty interval of the measurement is estimated to be $5% at 95% coverage. It is to
be noted that the natural frequency of vortex shedding for the present stationary cylinder
was observed at a Strouhal number of 0)2 and the time-averaged drag coe$cient was found
to be 1)08 (Fujisawa et al. 1998), which were in close agreement with the results in the
Figure 4. Phase-averaged drag and lift coe$cient in relation to phase angle of vortex shedding:
(a) drag coe$cient; (b) lift coe$cient.
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literature (King 1977). Two control results at di!erent reference-sensor position are shown
in this "gure: one is for the feedback sensor at position A (x/D"1)5, y/D"!0)8) and the
other is at the optimum feedback sensor position B (x/D"2, y/D"!1)2). It is clearly seen
that the aerodynamic performance of the cylinder is improved by the control, in comparison
with the stationary cylinder. Better control e$ciency appears on the aerodynamic perfor-
mance when the feedback sensor is located at the optimum position B than that at position
A, re#ecting the reduction in the velocity #uctuations at the reference sensor, as observed in
Figure 3. It should be mentioned that the maximum reduction in the phase-averaged drag
coe$cient is 16% and that in the lift coe$cient is over 70% in comparison with the
stationary cylinder. These results indicate an improvement in the aerodynamic performance
of the cylinder under feedback control, by optimizing the control parameters and feedback
sensor position suggesting the usefulness of the present neural network optimization
procedures. However, the drag reduction observed here is much smaller than those mea-
sured by Tokumaru (1991) with a simple rotational oscillation of the cylinder, which reaches
80% in drag reduction at the peak rotation rate of 2 and at several times larger forcing
frequency of cylinder oscillation than the natural one. The observed di!erence in the drag
reduction may be due to the dominant frequency of the feedback signal used in the present
study, which is "xed at the vortex shedding frequency. Further study will be useful for the
determination of forcing frequency in the feedback control and the use of the transverse
velocity component for the feedback signal, which is known to be a more robust indicator of
the intensity of vortex shedding.

4. CONCLUSIONS

The performance of active control of vortex shedding from a circular cylinder by rotational
feedback oscillation is studied experimentally using neural networks. The proposed neural
network model with back propagation algorithm is successfully applied to the optimization
study of control parameters, such as the phase lag and the feedback gain, to obtain an
optimum performance of the feedback controls. The optimum position of the reference
sensor is found to be distributed along the shear layer, and the most e!ective position for
attenuating the vortex shedding is found to be at x/D"2 and y/D"!1.2. The drag force
is reduced by 16% and the lift force is suppressed more than 70% under the optimum
feedback control in comparison with the stationary cylinder.
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